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Abstract

Functions and lines have been extensively used to visualize two-dimensional fluid, heat and mass transportation structures. However,
some ambiguities related to streamlines, heatlines and masslines still exist, especially for conjugate heat and mass transfer in anisotropic
media. Present work aims to clarify these issues from numerical viewpoints, mainly including diffusion coefficient of transportation func-
tion at the interface of different media, different numerical approaches for solving visualization functions, non-dimensional forms of heat-
function and massfunction matching the spatial Nusselt and Sherwood numbers. The numerical procedures and code routines for the
primitive conserved variables and the functions are illustrated through visualizing fluid, heat and solute transportations of double dif-
fusive natural convection in square enclosures with massive walls or center-inserted body.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Streamfunctions and streamlines are routinely the best
way to visualize the fluid flow. The heatfunctions and heat-
lines as analogous concept for the visualization of heat
transport were first introduced by Kimura and Bejan [1]
and Bejan [2], and its mass counterpart, the massfunctions
and masslines concept, by Trevisan and Bejan [3]. The
streamline, heatline and massline are used for long time
for visualization and analysis of fluid flow occurring in a
two-dimensional moving medium, defining well-bordered
corridors (fluid, energy and mass tubes respectively) where
fluid, energy and mass flow. Heatline and massline have
been used extensively to understand heat and mass transfer
in various geometries and applicable ranges. Several great
improvements are reviewed here.

Littlefield and Desai [4] extended heatfunction and heat-
line to cylindrical coordinates and illustrated laminar natu-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.06.026

* Corresponding author. Tel.: +86 731 882 2760; fax: +86 731 882 2667.
E-mail address: zfycfdnet@163.com (G.-F. Tang).
ral convection in a vertical annular space by similarity
solutions. Bello-Ochende [5] constructed Poisson-type
heatfunction equation analogous to the one used in com-
puting the streamfunction, and investigated the response
of the net energy trajectories to changes in the Rayleigh
number as its value increases from the subcritical, through
the threshold, to the postcritical values for the Benard-type
configuration in a square cavity. Aggarwal and Manhapra
[6,7] used heatlines for the numerical visualization of tran-
sient heat transfer in cylindrical enclosures. They computed
non-dimensional heatfunction at any time integrating the
first order derivatives of heatfunction. Not only can the
heatlines provide a convenient instantaneous visualization
of the heat flow, the value of the Nusselt number is also
given. Ho and Lin [8] presented heatlines for steady
laminar two-dimensional natural convection in concentric
and eccentric horizontal cylindrical annuli with mixed
boundary conditions. Afterwards, Ho and Lin [9] exam-
ined steady laminar natural convection of cold water in
a vertical annulus with a constant-heat-flux heated
inner wall and an isothermally cooled outer wall, vividly
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Nomenclature

A coefficient in difference equation
C concentration (kg/m3)
C dimensionless concentration
CP isobaric specific heat J/(kg K)
D mass diffusivity (m2/s)
f geometric interpolation factor
g gravitational acceleration (m/s2)
i, j nodal index along x and y axes, respectively
J transport flux
k thermal conductivity (W/m K)
L length of square enclosure (m)
Le Lewis number
N buoyancy ratio
NI, NJ maximum nodal index along x and y axes
Nu overall Nusselt number
p pressure (N/m2)
P dimensionless pressure
Pr Prandtl number
Rat thermal Rayleigh number
RD solute diffusion coefficient ratio
Rk thermal conductivity ratio
S source term
Sh overall Sherwood number
t temperature (K)
T dimensionless temperature
u, v velocity components in x, y directions (m/s)
U, V dimensionless velocity components in X, Y

Vr reference velocity scale
x, y Cartesian coordinates (m)
X, Y dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity (m2/s)
b volumetric expansion coefficient
C generic diffusion coefficient
D difference value
l dynamic viscosity (kg/m s)
m kinematic viscosity (m2/s)
q density (kg/m3)
/ generic intensive variable
U generic function for visualization
W streamfunction
n heatfunction
g massfunction

Subscripts

e w n s four interfaces of control volume around P

E W N S four nodes adjacent to P shown in Fig. 1
F values of the fluid domain
high (low) higher (lower) value
i step function for fluid/solid regions
max, min maximum, minimum
0 reference value or location
P at nodal point P

S values of the solid domain
x, y referring Cartesian co-ordinates
/ referring generic intensive variable /
U referring generic function U

Superscript

* dimensionless
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visualizing by means of contour maps of heatlines and
streamlines.

Morega and Bejan [10,11] used similarity variables to
derive closed form expressions for heatlines in forced-con-
vective boundary layers over flat plates in fluid media and
fluid-saturated porous media, respectively. Costa [12] fol-
lowed a similar approach to develop exact expressions for
natural convection from vertical plates in the presence of
both isothermal and isoflux boundary conditions.

Dash [13] developed the heatline concept for turbulent
flows using the turbulent flux components, while Bejan
[14, p. 361] did it adopting an effective diffusion coefficient
that includes the eddy diffusivity for heat transfer when
dealing with turbulent boundary layer flows.

Functions and lines used for visualization purposes can
be unified from physical and numerical viewpoints, Costa
[15] advocated a uniform formulation for the streamfunc-
tion, heatfunction and massfunction that is suitable for
direct incorporation into a computational fluid dynamics
code, including conjugate heat and mass transfer problems.
Conjugate heat transfer problem comprising the tube wall
as well as the gas stream was analyzed by Kim and Jang
[16]. The harmonic mean conductivities at the interface
between the tube wall and gas stream and at the interface
between the tube wall and the insulation material were con-
ducted respectively. Deng and Tang [17] defined functions
in terms of dimensionless governing equations and modi-
fied the formulation at the solid–fluid boundaries in the
work of Costa [15], considering that the diffusion coeffi-
cients of the function equations are invariant. However,
some inconsistency was reported subsequently by Costa
[18], confirming the accuracy of Costa’s formulation of
heatlines and masslines at the solid–fluid boundaries [15].
Costa [19] evolved the work of Costa [15] into the unifica-
tion of the streamline, heatline and massline methods for
anisotropic media. The numerical procedures and code
routines designed for isotropic media need only slight mod-
ifications to deal with anisotropic media through fully
implicit consideration due to the additional diffusive terms
for transport phenomena in anisotropic media. Mukho-
padhyay et al. [20] made the extension to the use of the
heatlines and masslines in reacting flows, the conserved
scalar variables being the total enthalpy (sum of sensible
enthalpy and enthalpy of reaction) and atomic mass
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fractions of the individual elements. Mukhopadhyay et al.
[21] unified the formulations for heatline and massline cal-
culations in terms of conserved scalars, such as enthalpy
and elemental mass fractions in reacting and non-reacting
jets. Their work has also been included in the unified visu-
alization methods for anisotropic media [19].

Except these improvements made to enlarge the applica-
bility of the heatlines and masslines, some other important
investigations have been conducted, including spherical
configuration [22], discrete heat sources [23], heat and mass
diffusive walls [24] and parallelogrammic enclosures [25,26].

However, in spite of its broader applications, some of the
implementational issues related to streamlines, heatlines
and masslines are not clarified, including different numeri-
cal solution strategies for visualization function lines, diffu-
sion coefficient of transportation function at the interface
of different media, values of streamfunction, heatfunction
and massfunction in isolated solid block, non-dimen-
sional forms of heatfunction and massfunction respectively
matching the spatial heat and mass transferring parameters.
The main objective of this work is to present treatments for
these issues. For the sake of simplicity, the solution strate-
gies and routine codes are illustrated by two-dimensional
laminar double diffusive natural convection in square enclo-
sures with massive walls or an inserted body. However,
without loss of generality, the method and results could
be straightforwardly extended to porous media, turbulent
flows, reacting flows and complex geometries.

2. Unification of streamfunction, heatfunction and
massfunction

Two-dimensional fluid flow, heat and mass transfer are
usually described by partial differential equations, which
can be written in the general conservative form [27, p. 16]

oqu/
ox
þ oqv/

oy
¼ o

ox
C/

o/
ox

� �
þ o

oy
C/

o/
oy

� �
þ S/ ð1Þ

Variable / is the specific transported variable, and some
particular meanings of / can be found in references [13–
15,17,19,20,27]. They are also presented in Table 1. The
Table 1
Diffusion coefficients and source terms for general variable / in Eq. (1) for
conjugate heat and mass transfer

Physical principle / C/ S/

Continuity 1 1 0
x momentum equation u l � op

ox

y momentum equation v l � op
oy þ qgbtðt � t0Þ
þqgbcðc� c0Þ

Energy conservation
(fluid side)

tF kF/CPF 0

Energy conservation
(solid side)

tS kS/CPF 0

Species conservation
(fluid side)

cF (qD)F 0

Species conservation
(solid side)

cS (qD)S 0
recognition that all the relevant differential equations for
fluid flow, heat and mass transfer, turbulence and related
phenomena can be thought of as particular cases of the
general / equation is an important time-saving step.
Mostly, we only need to concern about the numerical solu-
tion of Eq. (1).

2.1. Conjugate heat and mass transfer

If the fluid flow subsides (stagnant fluid or solid medium
with u = v = 0), the corresponding diffusion situation is
described by the right hand side of Eq. (1), such as k/CP

and qD stand for the heat and species mass diffusion coef-
ficients over the involved medium. When conjugate heat
and mass transfer problems are solved using the SIM-
PLE-like algorithms in a unitary computational domain
containing both the solid and fluid regions, one should
pay attention to ensure the continuity of heat and mass
fluxes at the solid–fluid interface.

In order to clarify this point, a simple conjugate heat
transfer problem, i.e., the steady two-dimensional convec-
tion–conduction heat transfer across a planar interface sep-
arating the solid and fluid regions, is studied. The following
form of energy equation without source term is employed
to conform the general Eq. (1):
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As expected, Eq. (2) is applicable to both the fluid and solid
regions. However, when the conjugate heat transfer prob-
lem is solved numerically using Eq. (2) in the unitary com-
putational domain, one has to pay close attention to ensure
the continuity of heat flux at the solid–fluid interface. As
noted by Patankar [27, p. 44] the harmonic mean of
(k/CP)F and (k/CP)S and the piecewise-linear temperature
profile have been adopted to evaluate the diffusion flux at
the interface in order to ensure the overall balance of the
computed results. Consequently, both solid and fluid spe-
cific heats (CPS and CPF) would affect the diffusion flux
at the interface and the computed temperature field. How-
ever, heat conduction only occurs in the solid region, the
actual temperature field should be independent of the solid
specific heat. Hence, the computed temperature field based
on both solid and fluid specific heats will be physically
incorrect for the case of CPS 6¼ CPF, although many
authors have ignored this slight problem when treating
with conjugate heat transfer problems [15–17,23,28]. If
great difference in the values of the solid and fluid specific
heats is involved in the computation, appreciable disconti-
nuity of the heat flux will appear at the solid–fluid interface
and serious error will be introduced in the computational
results [28]. A simple but very efficient approach to avoid
this error is that: the thermal conductivity k in Eq. (2) is
taken to be its actual value in the solid or fluid region, but
the specific heat of the solid region CPS is artificially set
to be equal to that of the fluid region CPF [29,30, p. 486].
As a result, the actual solid specific heat CPS will not affect
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the computed temperature field, i.e., the diffusion flux at the
interface would depend on kF/CPF and kS/CPF, and the heat
flux continuity can be ensured at the fluid–solid interface.
The reason for choosing the specific heat of fluid (CPF)
instead of that of solid (CPS) is that the specific heat
affects the results only through the convection term of the
energy equation (2), thus only the fluid specific heat is
important.

The mass transfer problem consists of solving the fol-
lowing Eq. (3) for the concentration field and determining
the mass fluxes associated with the concentration field from
the Fick’s law [14, p. 473].
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From the outset, it is worth noting the similarities between
the mass convection problem and the thermal convection
problem. The latter consists of determining the tempera-
ture field from the energy equation (2) and the heat fluxes
from Fourier’s law of thermal diffusion. Eqs. (2) and (3)
show that the concentration c occupies the place of
temperature, while the mass diffusivity D replaces the
thermal diffusivity a(k/qCP), instead of k/CP. Thus, the
aforementioned specific heat problem in conjugate heat
transfer would not be encountered in conjugate mass
transfer.

If fluid flows involving anisotropic medium, such as
porous medium, chemical species transportation, unified
formulation for conjugate heat and mass transfer can be
found in Costa [19] and Mukhopadhyay et al. [20,21]
respectively.

2.2. Streamfunction, heatfunction and massfunction

The general unification procedure for the stream-
function, heatfunction and massfunction applies only to
differential equations without source terms [15]. If the dif-
ferential equation for a given variable presents a non-zero
source term, conserved variables (such as total enthalpy
and elemental mass fractions) should be used to express
the scalar transport in terms of homogenous differential
equations [20,21]. Present work only focuses on the issues
related to the differential energy and mass equations with-
out source terms. By invoking the differential mass conser-
vation equation, Eq. (1) without source term can be written
as

o

ox
quð/� /0Þ � C/

o/
ox

� �
þ o

oy
qvð/� /0Þ � C/

o/
oy

� �
¼ 0

ð4Þ
the /0 is introduced by the fact that any variable other than
the pressure or the velocity components is made dimension-
less as (/ � /0)/D/, D/ being the variable scale in the
domain [14,31]. As noted by Trevisan and Bejan [3], the
heatline and massline would exhibit the ‘‘centrosymmetry
property” of streamline and isotherm/concentration pat-
terns of convection in enclosures with centrosymmetric
boundary conditions if the reference values /0 (t0 and c0)
were enclosure averaged quantities. In addition, the heatline
and massline patterns would not be unique, because a new
pattern can be plotted for each new reference temperature/
concentration that are used to specify t and c numerically.

Defining the function U(x,y) through its first order
derivatives as

oU
oy
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ox

ð5aÞ
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the new function U(x,y) is such that a constant U line is
parallel to the flux flow J/, or the flux across the constant
line is zero, which can be expressed as

dU ¼ J/ � ds ¼ �J/;y dxþ J/;x dy ð6Þ
Elementary segment ds is crossed by the flux flow J/. If dU
equals 0, it means that there is not any / flow crossing seg-
ment ds. In other words, constant U line is a non-crossed
line by the / flow, being thus a line that is tangent to the
flow vector. Some characteristics of function U lines can
be summarized as follows [15,17,19],

� A difference DU between the U lines at two points repre-
sents the / flow that crosses the segment linking these
points by unit depth, being thus specially instructive
the streets comprised between two constant U lines, in
which well bordered / flows are transferred.
� The U function is defined through its first order deriva-

tives, Eqs. (5a) and (5b), being thus only important dif-
ferences on the U values but not the U level. This relative
behavior is similar to that of pressure when evaluating
incompressible fluid flows, with a total freedom to
choose any suitable reference point.
� As the / flow flux cannot approach infinity, the area

between the U lines cannot be zero, and then a constant
U line either starts and ends on boundaries or circulates
into vortices.
� The function U(x,y) can represent the strength of

transportation, thus being relativities of convection
(qu(/ � /0), qv(/ � /0)) and diffusion ð�C/

o/
ox ;�C/

o/
oyÞ.

For example, heatfunction can determine which mode

dominates the heat transportation, heat convection or
heat conduction [1–26].

Assuming now that / is a continuous function to its sec-
ond order derivatives, the equality of its second order cross
derivatives can be established through the expressions
obtained from the right hand sides presented in Eqs. (5a)
and (5b), leading to Eq. (7),
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Fig. 1. Stencil of two-dimensional unit control volume (five-points
discretization scheme) and type of FV grids on the boundary intersections.

324 F.-Y. Zhao et al. / International Journal of Heat and Mass Transfer 50 (2007) 320–334
This is the second order partial differential equation from
which it will be evaluated the U field, for any particular cor-
responding meaning of variable / [15]. It is an equation
corresponding to a conduction-type problem, with source
term if the fluid flow subsists and without source term if
the fluid flow subsides, with the diffusion coefficient CU,
where

CU ¼ 1=C/ ð8Þ
As noted by Costa [15], the function diffusion coefficient CU

is maintained within parenthesis in Eq. (7) because it is a
variable and not a constant in general case. One can obtain
the streamfunction if /0 = 0, / = 1 and C/ = 1 as shown in
Table 1. However, preceding authors assume C/ as 0
[17,21], thus it would lead to error, being that denominator
would not be zero. Costa [15] has treated C/ as a small con-
stant number, which is similar as this. But the small con-
stant number would lead to float errors during calculations.

Eq. (7) is a conduction-type equation. Solution for each
particular U can be obtained following the same proce-
dures as for variable /, once the boundary conditions for
U are established. A unified treatment for the functions
used for visualization purposes is now finished from a
physical viewpoint [15]. The particular meaning of U for
some usual cases are including streamfunction W, heatfunc-
tion n and species massfunction g. The coupling of general
variable / and function U has also been conducted by
Bejan [14, p. 22, p. 505], Costa [15], Deng and Tang [17],
Costa [19] and Mukhopadhyay et al. [20].

3. Numerical solution of flow field and / fields

Excluding analytical and similarity solutions [4,10–12],
there are primarily two methods to solve the incompress-
ible fluid flow: vorticity-based method and primitive vari-
ables (pressure–velocity correction) method. For the
former method, the velocity should be obtained from the
known distributions of streamfunction or vorticity [8,9].
The velocity and vorticity were also solved integrally
[1,3]. Bello-Ochende constructed a heatfunction that can
be evaluated from vorticity and streamfunction [5]. There
are, however, some major disadvantages to the streamfunc-
tion/vorticity method. The value of vorticity at a wall is dif-
ficult to specify and is often the cause of trouble in getting a
converged solution. The pressure, which has been so clev-
erly eliminated, frequently happens to be an important
desired result or even an intermediate outcome required
for the calculation of fluid properties and momentum func-
tion. Therefore, the latter method, pressure–velocity cor-
rection, is applied broader [6,7,15–19,23–26] and adopted
in the present study.

Typical control volumes employed for fluid flow vari-
ables are shown in Fig. 1, the velocity components are cal-
culated for the points that lie on the faces of the control
volume (e, w, n and s), while the scalar variables and diffu-
sion coefficients lie on the nodes, such as P(i, j), E(i + 1, j),
W(i � 1, j), N(i, j + 1) and S(i, j � 1), thus being a staggered
grid system. So far, the specific information should be pro-
vided as to where the control volume faces are to be located
in relation to the grid points. The usual practice is to define
control volumes by a suitable grid and assign the computa-
tional node to the control volume center. However, for an
alternative practice, one could as well (for structured grids)
define the nodal locations first and construct control vol-
umes around them, so that control volume faces lie midway
between neighboring nodes. The advantage of the former
practice is that the nodal value represents the mean over
the control volume to higher accuracy (second order) than
in the latter practice, since the node is located at the cen-
troid of the control volume [27, p. 70, 30, p. 29, 32]. Addi-
tionally, for the conjugate heat and mass transfer
problems, the former practice can be such that the fluid–
solid interface forms a control volume face for the neigh-
boring grid points. Thus the former approach is used more
often [17] and will be adopted in the present study.

Governing equation (1) is discretized using finite volume
method (FVM) on the aforementioned staggered grid sys-
tem [27,30,32]. The third-order deferred correction QUICK
scheme [30, p. 165, 32, 33] and second-order central differ-
ence scheme are, respectively, implemented for the convec-
tion and diffusion terms. The resulting discretized
equations are solved by a line-by-line procedure, combin-
ing the tri-diagonal matrix algorithm (TDMA) and the suc-
cessive over-relaxation (SOR) iteration. General equation
(1) can be numerically solved by SIMPLE algorithm
detailed in Patankar [27].

To solve the conjugate heat and mass transfer problem,
the abrupt changes of diffusion coefficients at the interface
between the fluid and solid regions are handled by har-
monic mean formulation [27, p. 46, 31]. Additionally, the
existence of the isolated block in the flow field would com-
plicate the solution procedure. As far as FVM is con-
cerned, there are several ways to treat the region of solid
bodies as subsiding fluid, such as, large coefficient practice
[29, 30, p. 244, 31, 32], large source-term practice [27, p.
145, 30, p. 245, 32] and viscosity coefficient practice [17,
27, p. 149, 30, p. 487, 32]. In the present work, large coef-
ficient practice is adopted, i.e., the fluid and body regions
are solved simultaneously by introducing a block parame-
ter, which distinguishes a body region from a fluid region,
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into discretized momentum equations. Thus convection
terms are automatically turned off in the body region, ther-
mal and solutal balances at the fluid–solid interface are
carefully set up to make sure that the matching conditions
of the following relations are satisfied.

kF
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����
F

¼ kS
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����
S

; ðqDÞF
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¼ ðqDÞS
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����
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ð9Þ

Additionally, special care must be taken to the use of the
variable / at the boundary intersections or sharp corners.
Due to FVM is adopted, variables at these singular points
are not required and updated for computing the flow field
inside the domain. Thus they should be updated via inter-
polation or extrapolation from neighbor nodes. For exam-
ple, at the node (NI,1) presented in Fig. 1,

/ðNI;1Þ ¼ /ðNI� 1; 1Þ þ /ðNI;2Þ � /ðNI� 1; 2Þ ð10Þ
Similarly, /(1, NJ) can be handled by the following
relation:

/ð1;NJÞ ¼ /ð1;NJ� 1Þ þ /ð2;NJÞ � /ð2;NJ� 1Þ ð11Þ

Variables on other corners can also be handled as Eqs. (10)
and (11). After these variables / at the inner and boundary
nodes have been obtained, the function U can be calculated
by the following methods.
4. Numerical solution of function U fields

4.1. Integration method and Poisson method

For the integration method, Eqs. (5a) and (5b) are
adopted [6,7,16,20,21,24]. The values of each function (W,
n or g) are arbitrarily set to constants at reference point
(xr,yr). Using the values of functions at (xr,yr), the values
U(x,yr) for points along the horizontal axis (x,yr) are com-
puted by integration of Eq. (5b). Subsequently, using the
function values U(x,yr) at the axial points (x,yr), the func-
tions are evaluated at other points along the row (x,y) by
integration of Eq. (5a). In fact, the integration paths can
be chosen freely. The values of each point would be invari-
ant for different integration paths because U is a potential
function. It can also be written as

Uðx; yÞ ¼ Uðxr; yrÞ þ
Z ðx;yÞ

ðxr;yrÞ
� qvð/� /0Þ � C/

o/
oy

� �
dx

þ quð/� /0Þ � C/
o/
ox

� �
dy ð12Þ

For the Poisson method, the function U’s Poisson equa-
tion (7) is used to solve each transport function [1,17–
19,25]. The values of U over the boundaries are obtained
by integrating the adequate U derivative presented in
Eqs. (5a) and (5b) through the boundaries. Consequently,
the Poisson method would be performed on the basis of
the integration method.
4.2. Implementation of integration method

The function U(i0, j0) is assumed known as the reference
value on the reference point (i0, j0). Then, on the horizontal
axial (j = j0), it can be written that

UP ¼ UW � ½qvð/�/0Þ�W ðxw� xW Þ � ½qvð/�/0Þ�P ðxP � xwÞ

þ C/
o/
oy

� �
W

ðxw � xW Þ þ C/
o/
oy

� �
P

ðxP � xwÞ ð13Þ

For brevity, the P and W in Eq. (13) denote nodes (i, j0) and
(i � 1, j0) respectively, interface w is among them. The step-
wise profiles linking the (i, j0) and (i � 1, j0) are adopted for
each variable /. The piecewise-linear profiles can also be
assumed, while they show little difference if flow field does
not abruptly change or the grid lines are denser [29,31,32].
The first-order derivatives o/

oy on W and P nodes can be ob-
tained by central difference scheme. For example,

C/
o/
oy

� �
P

¼ ðC/ÞP
/n � /s

yn � ys

ð14aÞ

Due to in-convenient implementation of boundary condi-
tions for higher order schemes, the linear interpolation
between the two nearest nodes is recommended,

/n ¼ fn � /P þ ð1� fnÞ � /N ð14bÞ
fn ¼ ðyN � ynÞ=ðyN � yP Þ ð14cÞ

Here N and S represent (i, j0 + 1) and (i, j0 � 1) respectively.
The interpolation factor fn is a ratio defined in terms of the
distances shown in Fig. 1. The interface variable /s can be
obtained similarly as the /n. Continuing integration on the
vertical axial (i = i0), it can be written that

UN ¼ UP þ ½quð/� /0Þ�P ðyn � yP Þ þ ½quð/� /0Þ�NðyN � ynÞ

� C/
o/
ox

� �
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ox

� �
N

ðyN � ynÞ ð15Þ

Here N and P represent (i, j + 1) and (i, j) respectively. The
stepwise profiles linking the N and P are also adopted.
Additionally, the first-order derivative o/

ox on node P can
be calculated as following relations:

C/
o/
ox

� �
P

¼ ðC/ÞP
/e � /w

xe � xw
ð16aÞ

/e ¼ fe/P þ ð1� feÞ/E ð16bÞ
fe ¼ ðxE � xeÞ=ðxE � xP Þ ð16cÞ

The first-order derivative o/
ox on node N and variable /w can

be similarly calculated to the ones in Eqs. (16a)–(16c),
respectively. If the node (i, j) in Eq. (15) corresponds to
node (i, j0) in Eq. (13), after cyclic calculations and sum-
ming, the values of potential function U (1 6 i 6 NI,
1 6 j 6 NJ) can be obtained, then done the contour lines.

As the preceding illustrations, original flow field
variables / on sharp corners should be updated via inter-
polation or extrapolation from the nearest nodes as done
in Eqs. (10) and (11), because they are important when
calculating the function U. However, the function U on
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boundary sharp corners cannot be contaminated by the
singularities as it can be directly calculated via Eqs. (13)
and (15). Extending this procedure to all the domain
boundaries, starting from any suitable reference point
(xr,yr), then we have boundary conditions of first kind
for U over all the domain boundaries [15,17].

4.3. Implementation of poisson method

The function U values on the boundaries are assumed
known by integration along the boundaries via Eqs. (13)
and (15). Following that, the Poisson Eq. (7) is discretized
using FVM on the grid system presented in Fig. 1, and
written as

APUP ¼ AEUE þ AW UW þ ANUN þ ASUS þ SU ð17aÞ
AP ¼ AE þ AW þ AN þ AS ð17bÞ

AE ¼
yn � ys

xE � xP
ðCUÞe; AW ¼

yn � ys

xP � xW
ðCUÞw

AN ¼
xe � xw

yN � yP

ðCUÞn; AS ¼
xe � xw

yP � yS

ðCUÞs ð17cÞ

SU ¼ ½qvð/� /0Þ�e � ðCUÞe � ðyn � ysÞ
� ½qvð/� /0Þ�w � ðCUÞw � ðyn � ysÞ
� ½quð/� /0Þ�n � ðCUÞn � ðxe � xwÞ
þ ½quð/� /0Þ�s � ðCUÞs � ðxe � xwÞ ð17dÞ

Because the variable / and function diffusion coefficient CU

are assumed on the nodes, those at the interfaces e, w, n

and s should be interpolated or extrapolated from neighbor
nodes. For variable /, the linear interpolation similar as
Eqs. (14b) and (16b) can be adopted. However, for func-
tion diffusion coefficient CU, especially for conjugate heat
and mass transferring, different interpolation practices
have been involved in some discussions for domains with
portions of different transport properties [15,17,18]. Actu-
ally, the diffusion coefficient CU for U can be treated
through any suitable practice similar to that used for the
variable diffusion coefficient C/ [27, p. 47, 32]. Among
these, the harmonic mean practice shows to be the most
attractive one for the situations with sharp variations in
the involved diffusion coefficients [15, 17, 27, p. 47, 29,
30, p. 82, 31, 32], ensuring continuity of function U and
the flux flow J/, as is the case of conjugated transport phe-
nomena with a domain composed by contiguous and very
different materials. Using the harmonic mean practice, the
CU at interfaces e and n can be written respectively as

ðCUÞe ¼
1� fe

ðCUÞP
þ fe

ðCUÞE

� ��1

;

ðCUÞn ¼
1� fn

ðCUÞP
þ fn

ðCUÞN

� ��1

ð18Þ

Function diffusion coefficients at other interfaces can be
done similarly as in Eq. (18). It should be noticed that, if
the integration method were applied to the case of conju-
gate heat and mass transportations, values of function dif-
fusive coefficient CU (and the relevant harmonic mean
practices) at the interfaces are not required in Eqs. (12),
(13) and (15).

5. Other issues on the streamfunction, heatfunction and

massfunction

5.1. Function values in the impermeable solid region

Conjugate heat and mass transfer problem involves mul-
tiply-connected regions, where streamfunction W may be
multiple-valued. The most usual case, however, is that in
which the multiple connectedness is caused by the insertion
of an obstacle in the flow, since there is no net flow of fluid
through the obstacle,

H
dW = 0, so that in such a case W

remains single-valued. In other words, if the fluid flow sub-
sides in the impermeable solid, W would maintain constant.

However, the heatfunction and massfunction both are
composed of convection and diffusion terms. Heat and
mass flows can occur in both fluid and solid regions. As
a result, values of heatfunction and massfunction in solid
blocks would not maintain constants. Particularly, the
heatlines and masslines would become identical to the
heat-flux lines and mass-flux lines respectively, and
employed frequently to the studies of conduction and diffu-
sion phenomena [14, p. 23, 19].
5.2. Spatial evaluation of heat and mass transfer

If heatfunction and massfunction were properly made
dimensionless according with the concrete problems, their
dimensionless values would be closely matching the spatial
generalizations of the Nusselt and Sherwood numbers,
respectively. More recently, there have been many studies
in which the Nusselt number and Sherwood number are
defined (integrated) along a plane drawn through the con-
vective fluid, for example, through the mid-plane of an
enclosure with double diffusive natural convection [34,35].
In this new kind of Nusselt number, the heat transfer rate
is calculated as a superposition of convection and con-
duction, in the same way as in the construction of heat-
function. In other words, the heatfunction is a spatial
generalization of the Nusselt number concept, in the sense
that it describes the magnitude and direction of the heat
transfer rate through any surface that can be imagined
inserted in the convective medium. Similarly, the spatial
Sherwood number can be defined by the massfunction.
As an illustration, for steady double diffusive convection
in the isotropic medium, the total spatial Nusselt number
and Sherwood number on the vertical plane (X = X0) can
be expressed as

NuX¼X 0
¼
Z Y 2

Y 1

qV rL
k=CP

UT � oT
oX

� �
dY ;

ShX¼X 0
¼
Z Y 2

Y 1

qV rL
ðqDÞ UC � oC

oX

� �
dY ð19Þ
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Fig. 2. Physical models and geometries for double diffusive conjugate heat
and mass transfer.
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where Vr and L are velocity and length scales respectively.
As expected, on the surface of a solid wall, the overall spa-
tial Nusselt number and Sherwood number would degener-
ate into to the classical overall Nusselt number

R Y 2

Y 1
� oT

oX dY
and overall Sherwood number

R Y 2

Y 1
� oC

oX dY respectively.

Which attributes to that the convection terms in Eq. (19)
are close to zero [1,3–7,10–12,16,17,19,24,26,31]. Similarly,
those on the horizontal plane (Y = Y0) inserted in the iso-
tropic domain can also be defined as

NuY¼Y 0
¼
Z X 2

X 1

qV rL
k=CP

VT � oT
oY

� �
dX ;

ShY¼Y 0
¼
Z X 2

X 1

qV rL
ðqDÞ VC � oC

oY

� �
dX ð20Þ

The use of these expressions (Eqs. (19) and (20)) enables us
to obtain conservative heat and mass transfer rates within
the enclosure [35]. They include diffused and transported
quantities that are integrated over the vertical (horizontal)
axis in order to calculate the overall heat or mass transfer
rates along this axis.

6. Applications and discussions

Fig. 2 presents three square enclosures (L � L) and the
two-dimensional Cartesian coordinate systems. The exter-
nal vertical wall surfaces are maintained at constant and
uniform different levels of temperature and concentration,
thus giving rise to a double-diffusive free convective fluid
flow. The horizontal walls are assumed to have zero thermal
and mass diffusivities. Inner cavities and channels in these
three cases are filled with the same fluid and pollutant,
which are assumed to completely mixed Newton–Fourier
fluid with thermal conductivity kF and mass diffusivity
DF. The hatched zones presented in Fig. 2 are assumed to
be of the same and isotropic solid material with thermal
conductivity kS and mass diffusivity DS.

The scales and dimensionless variables are introduced,

V r ¼ a=L; Dt ¼ thigh � tlow; Dc ¼ chigh � clow ð21Þ
ðX ; Y Þ ¼ ðx; yÞ=L; ðU ; V Þ ¼ ðu; vÞ=V r; T ¼ ðt � t0Þ=Dt;

C ¼ ðc� c0Þ=Dc; P ¼ p=qV 2
r ð22Þ

where Dt and Dc are scales for temperature and concentra-
tion respectively [31,32]. Exercising these scales, one can
obtain the following non-dimensional set of partial differ-
ential equations corresponding to Eqs. (1)–(3) [24,25],

Continuity equation

oU
oX
þ oV

oY
¼ 0 ð23Þ

X-momentum equation

oUU
oX
þ oVU

oY
¼ Pr

o2U

oX 2
þ o2U

oY 2

� �
� oP

oX
ð24Þ
Y-momentum equation

oUV
oX
þ oVV

oY
¼ Pr

o
2V

oX 2
þ o

2V

oY 2

� �
� oP

oY
þ Rat PrðT þ NCÞ

ð25Þ
Energy conservation equation on the fluid

oUT
oX
þ oVT

oY
¼ o2T

oX 2
þ o2T

oY 2

� �
ð26Þ

Energy conservation equation on the solid blocks

0 ¼ o2T

oX 2
þ o2T

oY 2
ð27Þ

Pollutant mass conservation equation on the fluid

oUC
oX
þ oVC

oY
¼ 1

Le
o2C

oX 2
þ o2C

oY 2

� �
ð28Þ



Table 2
Comparison of results for double diffusive natural convection in a two-
dimensional cavity at Le = 1, Rat = 3.5 � 105

N Pr Trevisan and Bejan [3] Present study

Nu (Sh) Nu (Sh)Y=0.5 Nu (Sh) Nu (Sh)Y=0.5

0 7.0 4.83 5.88 4.86 5.81
0 0.7 4.78 5.82 4.82 5.75
1 7.0 5.73 6.83 5.75 6.79
1 0.7 5.72 6.87 5.73 6.75
3 7.0 6.88 8.05 6.84 7.88
3 0.7 6.76 7.92 6.75 7.96
9 7.0 8.67 9.86 8.50 9.58
9 0.7 8.44 9.55 8.40 9.43
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Pollutant mass conservation equation on the solid blocks

0 ¼ o2C

oX 2
þ o2C

oY 2
ð29Þ

The foregoing governing equations give rise to the dimen-
sionless governing parameters,

Rat ¼ gbtL
3Dt=ma; N ¼ bcDc=btDt;

Pr ¼ m=a; Le ¼ a=D ð30Þ

where N is the ratio between the solutal and thermal buoy-
ancy forces. It can be either positive or negative, its sign
depending on the ratio between the volumetric expansion
coefficients bc and bt. Assuming that bc > 0 and bt > 0,
N P 0. Its limits are that it is null for no pollutant diffusion
and infinite for no thermal diffusion. N is assumed to be po-
sitive in the present work. Prescription of the temperatures
and concentrations over the left and right walls can lead to
a situation of combined or opposite global heat and mass
flows. As illustrated in Fig. 2, if we impose the thermal
condition that tleft wall (T = 1) > tright wall (T = 0), then for
aiding flow cleft wall (C = 1) > cright wall (C = 0), and for
opposing flow cleft wall (C = 0) < cright wall (C = 1).

For conjugate heat and mass transfer problem, thermal
and solutal balances at the fluid–solid interfaces, Eq. (9),
should be satisfied. Correspondingly, the heat and mass
transfer diffusion coefficient ratios between the solid blocks
and the medium that fills the enclosure should be introduced,

Rk ¼ kS=kF ; RD ¼ ðqDÞS=ðqDÞF ð31Þ
Generally, for two-dimensional incompressible fluid and

constant property situation, the first order derivatives of U
in Eqs. (5a) and (5b) can be made dimensionless via the
dimensionless function U* = U/C/D/. Due to streamfunc-
tion W includes convection terms only, its dimensionless
form can be written as

W� ¼ W=qV rL ð32Þ
Thus, the dimensionless streamfunction equation can be
obtained,

oW�

oY
¼ U ; � oW�

oX
¼ V ð33Þ

The non-dimensional heatfunction n and massfunction g
can be defined respectively as

n� ¼ n

Dt k
CP

� �
F

; g� ¼ g
DcðqDÞF

ð34Þ

Consequently, the dimensionless first order derivatives of
heatfunction and massfunction equations can be obtained
as follows:

On the fluid

on�

oY
¼ UT � oT

oX
; � on�

oX
¼ VT � oT

oY
ð35Þ

og�

oY
¼ LeUC � oC

oX
; � og�

oX
¼ LeVC � oC

oY
ð36Þ
On the solid blocks

on�

oY
¼ �Rk

oT
oX

; � on�

oX
¼ �Rk

oT
oY

ð37Þ

og�

oY
¼ �RD

oC
oX

; � og�

oX
¼ �RD

oC
oY

ð38Þ

As expected, after integrating along a vertical axis (X = X0),
their dimensionless values would be closely matching the
spatial generalizations of the Nusselt and Sherwood num-
bers presented in Eq. (19) respectively [34–36]. If the Poisson
method were adopted, the second-order partial differential
equations corresponding to Eq. (7) across the anisotropic
media (both fluid and solid blocks) can be written that

o2W�

oX 2
þ o2W�

oY 2
þ oV

oX
� oU

oY
¼ 0 ð39Þ

o

oX
1

Rki

on�

oX

� �
þ o

oY
1

Rki

on�

oY

� �

þ o

oX
VT
Rki

� �
� o

oX
UT
Rki

� �
¼ 0 ð40Þ

o

oX
1

RDi

og�

oX

� �
þ o

oY
1

RDi

og�

oY

� �

þ Le
o

oX
VC
RDi

� �
� o

oX
UC
RDi

� �� �
¼ 0 ð41Þ

where Rki (RDi) should be step-changed according with the
different materials, i.e., Rki = RDi = 1 for fluid region, and
Rki = Rk (RDi = RD) for solid blocks.

6.1. Code verification for double diffusive natural convection

The aforementioned numerical methods for solving var-
iable /(U, V, P, T and C) and function U(W*, n* and g*) are
adopted. The convergence criterion is the maximal residual
of all the governing equations is less than 10�5. In addition
to the usual accuracy control, the accuracy of computa-
tions is also controlled using the energy and mass conserva-
tions within the system.

The computer code based on the mathematical model
above is validated in three ways. The first considers double
diffusive natural convection in a square cavity subjected
from horizontal heat and mass fluxes [3]. A comparison
of the results for Rat = 3.5 � 105, Pr = 0.7 and 7.0, and
Le = 1 may be found in Table 2, for this case the Nusselt
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Table 3
Overall Nusselt (Sherwood) numbers for N = 0, Le = 1.00, Pr = 0.71 and
different grids in case C

(NI,NJ) F–S–F Rat = 0 Rat = 105

Rk = RD Rk = RD

0.2 1.0 5.0 0.2 1.0 5.0

(24,24) 8–6–8 0.6034 1.0000 1.6411 4.6438 4.4739 4.1760
(40,40) 14–10–14 0.6048 1.0000 1.6459 4.5856 4.4121 4.1096
(52,52) 20–10–20 0.6049 1.0000 1.6461 4.5576 4.3856 4.0864
(72,72) 24–22–24 0.6056 1.0000 1.6490 4.5536 4.3725 4.0623
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number and Sherwood number will be equivalent. The
agreement between the present study and Trevisan and
Bejan [3]’s results for Le = 1 is fairly good, with the largest
Nusselt number difference around 4%. Second, the double
diffusive convection in a square enclosure with constant
temperature and concentration conditions is considered.
The local Nusselt or Sherwood number distributions along
the left vertical wall of the square cavity are compared with
those of assisting flow with parameters of Le = 1, Pr =
0.71, N = 1 from Beghein et al. [35], shown in Fig. 3,
together with the streamlines, isotherms (iso-concentra-
tions) and heatlines (masslines). It is found that the excel-
lent agreement has been achieved. Simultaneously, the
gradients of heatfunction (massfunction) on the left wall
match well with the local Nusselt (Sherwood) numbers,
as demonstrated by Eqs. (35) and (36). The overall Nusselt
number read as 2.79 from the heatline along the top wall
approaches to 2.78 [35], which confirms Eq. (19). Addi-
tional comparisons (N = 0, Rat = 104–106, and Rk = 10.0)
with the results of Kim and Viskanta [37] reveal agreement
to within the accuracy with which their graphically pre-
sented Nusselt number data could be read.

Independence of solution on the grid size is studied for
various cases, Rat, N, Pr, Le, Rk and RD. The grid is
selected after some preliminary tests of asymptotic type.
For instance, Table 3 shows the results for various thermal
conductivity ratios and Rat = 0 and 105 in case C illus-
trated in Fig. 2. In these calculations, the number of con-
trol volumes in each direction is varied from 6 to 22 in
the body and 8 to 24 in each passageway between the body
and the enclosure walls. The results show that grid inde-
pendence is achieved above 40 � 40, showing acceptable
differences in heat transfer rate (1%). In any case, Nu

(Sh) for various Rk (RD) shows similar trends as a function
of grid size, ensuring the observed conclusion of grid inde-
pendence. Grid refinement near the solid walls and bodies
is used to accurately resolve large velocity, temperature and
concentration gradients.

6.2. Transportation structures and heat/mass transfer

The medium that fills the cavity is the moist air with a
low concentration of water vapour, and one can take
Pr = 0.7 and Le = 0.8. Subsequently, as Le approaching
unit, the local and global Sherwood numbers are always
very close to the corresponding Nusselt numbers [25,35].
In following fluid, heat and mass transportation charts,
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the intervals of streamlines, heatlines and masslines are
DU� ¼ ðU�max � U�minÞ=11, where U stands for W, n or g.

6.2.1. Case A – double diffusive natural convection in a

square enclosure

The streamlines, heatlines and masslines computed by
Poisson method coincide with those from integration
method completely, as illustrated in Fig. 4. The overall
Nusselt and Sherwood numbers can be read directly from
the heatlines and masslines along the top wall, such as
(Nu,Sh) = (1.33,1.23), (4.79,4.30) and (4.53,�4.07), respec-
tively under (Rat,N) = (103,1.0), (104,10.0) with combined
buoyancy effects and (104,10.0) with opposed buoyancy
effects.

When thermal and solutal Rayleigh numbers are low
(103), though they are combined, the heat and mass transfer
through the enclosure occurs mainly by thermal conduction
and solutal diffusion as shown in Fig. 4(a). Therefore, Nu

and Sh equal 1.33 and 1.23 respectively, which corresponds
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Fig. 4. Streamlines (top), heatlines (center) and masslines (bottom) for aiding (a
lines are computed by integration method, while solid lines are done by Poiss
to a conduction (diffusion) dominated regime because the
Nusselt number and Sherwood number both have values
of 1 for Rat = 0. The W�min ¼ �2:07 for the combined global
heat and mass flows, is a little greater than that of pure ther-
mal natural convection, W�min ¼ �1:17 presented by Deng
and Tang [17], which indicates that convection is really
weak. Therefore, the streamlines are of clockwise uni-
cellular flow structure, heatlines and masslines both
exhibit pseudo-conduction/diffusion structure as shown in
Fig. 4(a). Besides this, the masslines crossing the higher-
concentration wall are more crowded near the bottom side
than those near the topside. This massline pattern visualizes
the non-uniform distribution of the mass flux over the walls,
which is different from the massline pattern provided by
Trevisan and Bejan [3], in the case of uniform mass flux
boundary conditions.

As combined heat and mass transfer strengthens greatly
(Rat = 104, N = 10), streamlines presented in Fig. 4(b) have
bicellular flow structure. It should be noted that, in terms
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of flow field, this nearly corresponds to a single natural
convection heat transfer situation with Rat = 105. This is
the expected behavior due to the Rat Pr(T + NC) source
term in the Y-momentum Eq. (25). W�min ¼ �11:40 for this
situation approaches to W�min ¼ �9:50 for pure thermal nat-
ural convection in square cavity [17,28]. As expected, the
overall Nusselt and Sherwood numbers both increase to
higher values, 4.79 and 4.30 respectively. The non-uniform
distribution of streamlines implies that the convection is
strong in the boundary layer but weak in core where the
fluid is almost stagnant. Convection has become a domi-
nant mechanism to transport heat and mass, which is more
clearly depicted by heatlines and masslines. The heatlines
show a circulating core, with a global insulation effect over
the cavity, the effective heat transfer occurring along a thin
region near the top wall. Similarly, mass transport struc-
tures can be investigated by masslines.

Strong changes occur for the situation with opposite
global heat and mass flows, as illustrated by Fig. 4(c). In
what concerns flow structure, it comprises a major coun-
ter-clockwise vortex. As the main contribution is from
-0.11

-0.44

-0.99

-5

-9.

Ψ* = 0.110,  Ψ*
min= -1.21 Ψ*= 1.060,  Ψ

2.88

1.73

0.58

3.17 5.56

 *= 0.288  *= 0

2.86

1.72

0.57

1.14

3.14 5.20

 *= 0.285 * = 0

Δ Δ

Δ Δ

Δ η Δ η

Rat = 103    N = 1.0 Rat = 104 

ξ ξ

, ,
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maintained at 10.0. Base legend as in Fig. 4.
the solutal buoyancy, and the highest concentration is at
the right vertical wall, the thermosolutal convection
induced flow takes place through counter-clockwise vor-
texes. The temperature and concentration contour plots
(not shown) take the form of the mirror images corre-
sponding to those associated with the pure natural convec-
tion heat transfer problem for Rat = 105, as well as the
global Nusselt number, 4.53 in present situation and 4.52
in pure thermal natural convection [17,24]. The global Nus-
selt and Sherwood numbers are similar to those corre-
sponding to the situations of combined buoyancy effects
with N = 10. A drastic change occurs over the heatlines
and masslines, presenting an anti-clockwise rotation. Heat
flows now in the X direction through the region close to the
bottom wall. The closed counter-clockwise loop on the
heatlines is placed near the left vertical wall, of highest tem-
perature level. This is a direct consequence of the main flow
occurring in the form of counter-clockwise vortexes. The
solute flowing in the X direction proceeds now from the
right to the left, and flows over the narrow region close
to the upper wall, as clearly shown by the masslines. The
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closed counter-clockwise loop on the masslines is placed
near the right vertical wall, of highest concentration level.
Heat flows mainly through a thin region close to the lower
horizontal wall, and mass flows mainly through a thin
region close to the upper horizontal wall of the enclosure.

6.2.2. Case B – square enclosure encircled with finite walls

The inner square cavity filled with fluid mixture is cen-
tered in the enclosure. The void fraction, acreage ratio of
inner cavity to the external enclosure, is fixed at 0.64.
The thermal conductivity ratio (Rk) and solutal diffusion
ratio (RD) are both maintained at 10.0.

As presented in Fig. 5, visualization lines from Poisson
equation method and integration method would coincide
with each other. However, with the enhanced convection,
there would exist differences, especially for heatlines and
masslines presented in Fig. 5(b) and (c), which would attri-
butes to the convergence errors resulted from higher Ray-
leigh number and buoyancy ratio. Comparing with pure
double diffusive natural convection, conjugate heat and
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Fig. 6. Streamlines (top), heatlines (center) and masslines (bottom) for aiding (
maintained at 10.0. Base legend as in Fig. 4.
mass transfer problems can provoke the unique conver-
gence issue for coupling of momentum and pressure. In
other words, the convergence accuracy can be explicitly
embodied by function contours calculated from different
methods [32,36]. Essentially, the Poisson method, Eq. (7)
of function U cannot be set up until the variable / is
continuous to its second-order derivatives all over the
domain, while the integration method, Eq. (12), has no
such inhibition.

At small Rat (103) and low buoyancy ratio (N = 1), there
are little heat and mass transfer between the top horizontal
wall and the fluid, with sparse heatlines and masslines
crossing that top interface shown in Fig. 5(a).

With the increased Rat and N, as illustrated in Fig. 5(b),
the heat and solutal flows by convective transportation
cluster to the top horizontal wall, while the heat conduc-
tion and solutal diffusion are dominant in the center of cav-
ity. This is due to the fact that as the fluid sweeps the left
vertical wall it becomes heated and soluted, the boundary
layer would become thinner with increasing Rat and N.
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As the fluid flows along the upper wall it continues to be
heated and soluted until at some point it begins to release
some of its energy and solute to the wall, where heatline
and massline are penetrating from fluid to the wall. The
fluid flowing down along the cold and lower-concentration
vertical wall continues to release some of its energy and sol-
ute. As the cold and low-concentration fluid sweeps the bot-
tom horizontal wall, the direction of heat and mass transfer
should be from the wall to fluid, but it is still from the fluid
to the wall after fluid travels near the left side. The heatlines
and masslines show that there are little heat and mass
exchanges between the fluid and the bottom horizontal wall.

Fig. 5(c) presents the situation corresponding to the
opposite buoyancy effects, with a buoyancy ratio N = 10.
The temperature and concentration contour plots (not
shown) also take the form of the mirror images corre-
sponding to these associated with the pure natural convec-
tion heat transfer problem for Rat = 105, as well as the
global Nusselt number, 5.38 in present situation and 5.27
in pure thermal natural convection [24,37]. Drastic changes
for heatlines and masslines also take place, similarly as
reported for pure double diffusive natural convection in
square enclosures.
6.2.3. Case C – square enclosure with centered solid body

The fluid-saturated square enclosure is centered with
one square conducting body. The solid occupied volume
ratio, the thermal conductivity and solutal diffusion ratio
are maintained at 0.36, 10.0 and 10.0 respectively.

When the Rayleigh number and combined buoyant ratio
are low, Rat = 103 and N = 1.0, the existence of a conduct-
ing body reduces the convection, with the maximum value
of absolute streamfunction jWjmax decreasing to 0.21 in
Fig. 6(a), from 2.07 in Fig. 4(a). Thus, conduction and dif-
fusion play a fully dominant role in the process of heat and
mass transfer. For higher thermal and mass diffusion ratios
of solid body, the total Nusselt number and Sherwood
number increase to 1.88 and 1.87 from 1.33 and 1.23
respectively. Accordingly, the heatlines and masslines basi-
cally follow the principle of heat conduction and mass
diffusion, largely exhibiting parallel lines.

As can be seen from the heatlines and masslines shown
in Fig. 6(b), the solid body directly conducts heat and sol-
ute from the hot and higher-concentration fluid near the
top-left wall to the cold and lower-concentration fluid adja-
cent bottom-right wall, which acts like ‘‘short circuiting”.
The thermal conduction and solutal diffusion of solid body
reduce the temperature and concentration differences
between the two sides, and eventually degrade the strength
of convection as compared to the pure double diffusive
convection at Rat = 104 and N = 10, with the maximum
absolute streamfunction jWjmax decreasing from 11.40 to
7.76. The overall heat and mass transfer across the enclo-
sure, represented by the overall Nusselt and Sherwood
numbers, decreases to Nu = 4.24 and Sh = 3.69, 13% and
17% lower than that for pure double diffusive convection.
Fig. 6(c) presents the situation corresponding to the
opposite buoyancy effects, with a buoyancy ratio N = 10.
Drastic changes for heatlines and masslines also take place,
similar as the aforementioned opposed buoyancy flows.

7. Concluding remarks

This study has presented some implementational issues
and applications related to streamlines, heatlines and mass-
lines.

The function diffusion coefficients are uniquely obtained
from the diffusion coefficients of the corresponding primi-
tive variables, CU = 1/C/, harmonic mean practice of func-
tion coefficients at interfaces of solid and fluid regions is
recommended. The function lines can be obtained by Pois-
son method and integration method. Streamlines would
only be valid in fluid regions, while heatlines and masslines
can penetrate the solid blocks. Appropriate dimensionless
forms of heatfunction and massfunction would match the
spatial Nusselt and Sherwood numbers, respectively.

Broader applications of double diffusive conjugate natu-
ral convection have validated the solution strategies. Con-
vergence errors can be explicitly embodied by differences
of function contours calculated by different methods. The
overall Nusselt and Sherwood numbers can be read directly
from the contours along the horizontal top wall. The stream-
lines, heatlines and masslines provide a more practical and
efficient way to visualize the results than the customary ones.
Visualization results by streamlines, heatlines and masslines
directly exhibit the nature of fluid, and heat and mass trans-
ports through each cavity and also through the diffusive
walls and solid bodies, and thus provides more vigorous
means to discuss the convective heat and mass transfer.

Acknowledgements

The authors wish to express their appreciation for sup-
port from the National Natural Science Foundation of
China (No. 50578059). The authors are also grateful to
the anonymous referees who provided detailed and con-
structive comments.

References

[1] S. Kimura, A. Bejan, The ‘‘Heatline” visualization of convective heat
transfer, J. Heat Transfer 105 (1983) 916–919.

[2] A. Bejan, Convection Heat Transfer, first ed., Wiley, New York,
1984.

[3] D.V. Trevisan, A. Bejan, Combined heat and mass transfer by natural
convection in a vertical enclosure, J. Heat Transfer 109 (1987) 104–
112.

[4] D. Littlefield, P. Desai, Buoyant laminar convection in a vertical
cylindrical annulus, J. Heat Transfer 108 (1986) 814–821.

[5] F.L. Bello-Ochende, A heatfunction formulation for thermal convec-
tion in a square cavity, Comput. Methods Appl. Mech. Eng. 68 (1988)
141–149.

[6] S.K. Aggarwal, A. Manhapra, Use of heatlines for unsteady
buoyancy-driven flow in a cylindrical enclosure, J. Heat Transfer
111 (1989) 576–578.



334 F.-Y. Zhao et al. / International Journal of Heat and Mass Transfer 50 (2007) 320–334
[7] S.K. Aggarwal, A. Manhapra, Transient natural convection in a
cylindrical enclosure nonuniformly heated at the top wall, Numer.
Heat Transfer, Part A 15 (1989) 341–356.

[8] C.J. Ho, Y.H. Lin, A numerical study of natural convection in
concentric and eccentric horizontal cylindrical annuli with mixed
boundary conditions, Int. J. Heat Fluid Flow 10 (1989) 40–47.

[9] C.J. Ho, Y.H. Lin, Natural convection of cold water in a vertical
annulus with constant heat flux on the inner wall, J. Heat Transfer
112 (1990) 117–123.

[10] Al.M. Morega, A. Bejan, Heatline visualization of forced convec-
tion boundary layers, Int. J. Heat Mass Transfer 36 (1993) 3957–
3966.

[11] Al. M. Morega, A. Bejan, Heatline visualization of forced convection
in porous media, Int. J. Heat Fluid Flow 15 (1994) 42–47.

[12] V.A.F. Costa, Heatline and massline visualization of laminar natural
convection boundary layers near a vertical wall, Int. J. Heat Mass
Transfer 43 (2000) 3765–3774.

[13] S.K. Dash, Heatline visualization in turbulent flow, Int. J. Numer.
Methods Heat Fluid Flow 6 (1996) 37–46.

[14] A. Bejan, Convection Heat Transfer, second ed., Wiley, New York,
1995.

[15] V.A.F. Costa, Unification of the streamline, heatline and massline
methods for the visualization of two-dimensional transport phenom-
ena, Int. J. Heat Mass Transfer 42 (1999) 27–33.

[16] S.J. Kim, S.P. Jang, Experimental and numerical analysis of heat
transfer phenomena in a sensor tube of a mass flow controller, Int. J.
Heat Mass Transfer 44 (2001) 1711–1724.

[17] Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat
transport for conjugate natural convection/heat conduction by
streamline and heatline, Int. J. Heat Mass Transfer 45 (2002) 2373–
2385.

[18] V.A.F. Costa, Comment on paper Qi-Hong Deng, Guang-Fa Tang,
Numerical visualization of mass and heat transport for conjugate
natural convection/heat conduction by streamline and heatline, Int. J.
Heat Mass Transfer 46 (2003) 185–187.

[19] V.A.F. Costa, Unified streamline, heatline and massline methods for
the visualization of two-dimensional heat and mass transfer in
anisotropic media, Int. J. Heat Mass Transfer 46 (2003) 1309–1320.

[20] A. Mukhopadhyay, X. Qin, S.K. Aggarwal, I.K. Puri, On extension
of ‘‘heatline” and ‘‘massline” concepts to reacting flows through use
of conserved scalars, J. Heat Transfer 124 (2002) 791–799.

[21] A. Mukhopadhyay, X. Qin, I.K. Puri, S.K. Aggarwal, Visualization
of scalar transport in non-reacting and reacting jets through a unified
‘‘heatline” and ‘‘massline” formulation, Numer. Heat Transfer, Part
A 44 (2003) 683–704.
[22] H. Chattopadhyay, S.K. Dash, Numerical visualization of convective
heat transfer from a sphere – with and without radial mass flux, Int. J.
Numer. Methods Heat Fluid Flow 5 (1995) 705–716.

[23] H.Y. Wang, F. Penot, J.B. Sauliner, Numerical study of a buoyancy-
induced flow along a vertical plate with discretely heated integrated
circuit packages, Int. J. Heat Mass Transfer 40 (1997) 1509–1520.

[24] V.A.F. Costa, Double diffusive natural convection in a square
enclosure with heat and mass diffusive walls, Int. J. Heat Mass
Transfer 40 (1997) 4061–4071.

[25] V.A.F. Costa, Double diffusive natural convection in parallelogram-
mic enclosure, Int. J. Heat Mass Transfer 47 (2004) 2913–2926.

[26] V.A.F. Costa, M.S.A. Oliveira, A.C.M. Sousa, Laminar natural
convection in a vertical stack of parallelogrammic partial enclosures
with variable geometry, Int. J. Heat Mass Transfer 48 (2005) 779–792.

[27] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemi-
sphere, Washington, DC, 1980.

[28] F.Y. Zhao, L. Zhang, G.F. Tang, J.L. Lu, Numerical simulation of
airflow in partitioned enclosures at high Rayleigh numbers, in: Proc.
Energy and Environment 2003, Science Press, New York, 2003, pp.
139–143.

[29] F.Y. Zhao, G.F. Tang, D. Liu, Mixed convection and conjugate heat
transfer in multi air ducts of thermoelectric refrigerator, HV&AC 35
(2005) 12–17.

[30] W.Q. Tao, Numerical Heat Transfer, second ed., Xi’an Jiaotong
University Press, Xi’an, 2002.

[31] F.Y. Zhao, G.F. Tang, D. Liu, Conjugate natural convection in
enclosures with external and internal heat sources, Int. J. Eng. Sci. 44
(2006) 148–165.

[32] F.Y. Zhao, Numerical Simulation of Thermal Environment in Urban
Residential District. M.S. Thesis, Hunan University, PR China, 2003.

[33] S. Thakur, W. Shyy, Some implementational issues of convection
schemes for finite-volume formulations, Numer. Heat Transfer, Part
B 24 (1993) 31–55.

[34] M. Benzeghiba, S. Chikh, A. Campo, Thermosolutal convection in a
partly porous vertical annular cavity, J. Heat Transfer 125 (2003)
703–715.

[35] C. Beghein, F. Haghighat, F. Allard, Numerical study of double
diffusive natural convection in a square cavity, Int. J. Heat Mass
Transfer 35 (1992) 833–846.

[36] F.Y. Zhao, D. Liu, G.F. Tang, Conjugate heat transfer in square
enclosures, Heat Mass Transfer, in press, doi:10.1007/s00231-006-
0136-4.

[37] D.M. Kim, R. Viskanta, Study of the effects of wall conductance on
natural convection in differently oriented square cavities, J. Fluid
Mech. 144 (1984) 153–176.

http://dx.doi.org/10.1007/s00231-006-0136-4
http://dx.doi.org/10.1007/s00231-006-0136-4

	Application issues of the streamline, heatline and massline for conjugate heat and mass transfer
	Introduction
	Unification of streamfunction, heatfunction and massfunction
	Conjugate heat and mass transfer
	Streamfunction, heatfunction and massfunction

	Numerical solution of flow field and  phi  fields
	Numerical solution of function  Phi  fields
	Integration method and Poisson method
	Implementation of integration method
	Implementation of poisson method

	Other issues on the streamfunction, heatfunction and massfunction
	Function values in the impermeable solid region
	Spatial evaluation of heat and mass transfer

	Applications and discussions
	Code verification for double diffusive natural convection
	Transportation structures and heat/mass transfer
	Case A - double diffusive natural convection in a square enclosure
	Case B - square enclosure encircled with finite walls
	Case C - square enclosure with centered solid body


	Concluding remarks
	Acknowledgements
	References


